EXTREMELY WEAKLY UNCONDITIONALLY CONVERGENT SERIES

BY JOHN ELTON[†]

ABSTRACT

It is proved that if $\sum_{i=1}^{\infty} x_i$ is a non-convergent series in a Banach space X such that $\sum_{i=1}^{\infty} |f(x_i)| < \infty$ for all extreme points f of the unit ball of X^* , then X contains a subspace isomorphic to c_0 , improving a result of Bessaga and Pelczynski. The proof uses Fonf's result that Lindenstrauss-Phelps spaces contain isomorphs of c_0 .

We give a simple proof of

THEOREM 1. Let (x_i) be a normalized basis for a Banach space X, and suppose $\sum_{i=1}^{\infty} |f(x_i)| < \infty$ for all $f \in \text{ext } B^*$, the set of extreme points of the unit ball B^* of X^* . Then every subspace of X has a subspace isomorphic to c_0 .

As a consequence, we obtain the following improvement of a result of Bessaga and Pelczynski [1]:

COROLLARY. A Banach space X has a subspace isomorphic to c_0 if and only if there is a sequence (x_i) in X so that $\sum_{i=1}^{\infty} |f(x_i)| < \infty$ for every $f \in \text{ext } B^*$ but $\sum_{i=1}^{\infty} x_i$ fails to converge.

This also generalizes the result of V. Fonf [3] that Lindenstrauss-Phelps spaces (infinite-dimensional real Banach spaces whose dual balls have countably many extreme points) contain isomorphs of c_0 hereditarily. The proof of Theorem 1 uses the following strengthening of a result of Kadets and Fonf [4]:

THEOREM 2. Suppose that X is an infinite-dimensional real Banach space for which ext B^* can be covered by a countable union of norm-compact sets. Then X is isomorphic to a Lindenstrauss-Phelps space.

[†] Supported in part by NSF-MCS-8002393. Received May 3, 1981

Kadets and Fonf showed that if X satisfies the hypothesis of Theorem 2, then X is not reflexive. Our proof of Theorem 2 is obtained by only a slight modification of the beginning of Fonf's proof in [3].

PROOF OF THEOREM 2. Let ext $B^* \subset \bigcup_{n=1}^{\infty} k_n$, where each k_n is compact in the norm topology of X^* . We may assume $k_n \subset B^*$ for each n. Let $\varepsilon_n \downarrow 0$, $\varepsilon_1 < 1$. Let \mathscr{F}_n be a finite $\varepsilon_n/2$ net for k_n . Define a new norm on X by the formula

$$|||x||| = \sup_{n=1}^{\infty} \{(1+\varepsilon_n)|f(x)|: f \in \mathscr{F}_n\}.$$

Let V^* be the unit ball of $(X^*, \| \| \cdot \| \|)$. It is easy to see that $\| x \| \le \| x \| \le (1+\varepsilon_1) \| x \|$, so the new norm is equivalent to the old, and $V^* \supset B^*$. We shall show that $\mathring{V}^* \supset B^*$, where $\mathring{V}^* = \{f \in X^* : \| f \| < 1\}$. If not, there exists $f_0 \in X^*$ with $\| f_0 \| = \| f_0 \| = 1$. Let $F_0 \in X^{**}$ such that $F_0(f_0) = 1$, $\| F_0 \| = 1$, so $\| F_0 \| = 1$ also. It was shown in [4] that X^* is separable. Thus there is $f \in \text{ext } B^*$ such that $F_0(f) = 1$ by a theorem of Bessaga and Pelczynski [2]. Now $f \in k_n$ for some n, so $\| f - g \| < \varepsilon_n / 2$ for some $g \in \mathscr{F}_n$. Thus $F_0(g) > 1 - \varepsilon_n / 2$, so $F_0((1+\varepsilon_n)g) > (1+\varepsilon_n)(1-\varepsilon_n / 2) > 1$, a contradiction to $\| F_0 \| = 1$ since $(1+\varepsilon_n)g \in V^*$. Thus the inclusion holds. From Milman's theorem, ext $V^* \subset W^*$ -closure $\bigcup_{n=1}^{\infty} \{ \pm (1+\varepsilon_n)f : f \in \mathscr{F}_n \}$ but any W^* -limit point of the set $\bigcup_{n=1}^{\infty} \{ \pm (1+\varepsilon_n)f : f \in \mathscr{F}_n \}$ lies in $B^* \subset \mathring{V}^*$, so could not be an extreme point of V^* . Thus ext $V^* \subset \bigcup_{n=1}^{\infty} \{ \pm (1+\varepsilon_n)f : f \in \mathscr{F}_n \}$ which proves the theorem.

LEMMA. Let X satisfy the hypothesis of Theorem 1. Then (x_i) is a shrinking basis for X.

PROOF. It is sufficient to show that if (u_i) is a normalized block basis on (x_i) , then $u_i \to 0$ weakly. But $\sum_{i=1}^{\infty} |f(x_i)| < \infty$ for $f \in \text{ext } B^* \Rightarrow f(u_i) \to 0$ for $f \in \text{ext } B^*$, since each u_i has coefficients in its expansion according to the basis (x_i) which are bounded. Thus the conclusion follows from Rainwater's theorem [7].

PROOF OF THEOREM 1. Without loss of generality we may assume X is a real space. Let (f_i) be biorthogonal to (x_i) . Define $T: l_1 \to X^*$ by $T(\sum_{i=1}^{\infty} \alpha_i e_i) = \sum_{i=1}^{\infty} \alpha_i f_i$, where (e_i) is the unit vector basis of l_1 . If $T \mid [e_i]_{i=N}^{\infty}$ is an isomorphism for some N, then it is easily seen that $(x_i)_{i=N}^{\infty}$ (and hence $(x_i)_{i=1}^{\infty}$) is equivalent to the unit vector basis of c_0 . So suppose this fails for every N. Then by a standard argument we may construct a normalized block basis (u_i) of (e_i) such that $||Tu_i|| < 2^{-j}$, so that $T \mid [u_i]_{j=1}^{\infty}$ is a compact operator (this argument is due to Kato [5]). Write

$$u_i = \sum_{i=m_i+1}^{m_{i+1}} \lambda_i e_i, \quad \sum_{i=m_i+1}^{m_{i+1}} |\lambda_i| = 1, \quad m_1 < m_2 < \cdots.$$

Let

$$h_i = Tu_i = \sum_{i=m_i+1}^{m_{i+1}} \lambda_i f_i, \quad y_i = \sum_{i=m_i+1}^{m_{i+1}} (\operatorname{sgn} \lambda_i) x_i, \quad Y = [y_i]_{j=1}^{\infty}.$$

Then (h_i) is biorthogonal to (y_i) and so by the lemma, $(\tilde{h_i})$ is a basis for Y^* where $\tilde{h_i} = h_i \mid Y$. Let $k_n = \{g \in B^* : \sum_{i=1}^{\infty} |g(x_i)| \le n\}, n = 1, 2, \cdots$. Thus ext $B^* \subset \bigcup_{n=1}^{\infty} k_n$. If $g \in k_n$, $\sum_{i=1}^{\infty} |g(y_i)| \le \sum_{i=1}^{\infty} |g(x_i)| \le n$ (even though $||y_i|| > 2^i$). So if $g \in k_n$ and $\tilde{g} = g \mid Y = \sum_{i=1}^{\infty} \beta_i \tilde{h_i}$, then $\sum_{i=1}^{\infty} |\beta_i| = \sum_{i=1}^{\infty} |g(y_i)| \le n$. Let

$$C_n = \left\{ \sum_{j=1}^{\infty} \beta_j \tilde{h_j} : \sum_{j=1}^{\infty} |\beta_j| \leq n \right\} = nT(\text{Ball}[u_j]_{j=1}^{\infty}) | Y.$$

This is norm-compact in Y^* . Now

$$\operatorname{ext}(\operatorname{Ball} Y^*) \subset \{g \mid Y : g \in \operatorname{ext} B^*\} \subset \bigcup_{n=1}^{\infty} \{g \mid Y : g \in k_n\} \subset \bigcup_{n=1}^{\infty} C_n.$$

Thus Y is isomorphic to a Lindenstrauss-Phelps space by Theorem 2, so Y contains an isomorph of c_0 by Fonf's result [3]. By a standard argument, any subspace of X contains a normalized basic sequence whose closed linear span satisfies the hypothesis of Theorem 1, so X actually contains isomorphs of c_0 hereditarily.

This completes the proof of Theorem 1.

The corollary follows from Theorem 1 by a standard argument.

REMARKS. (1) R. Haydon and E. Odell proved the conclusion of Theorem 1 holds under the stronger hypothesis $\sum_{i=1}^{\infty} |f(x_i)| < \infty$ for all $f \in w^*$ -closure ext B^* . However, there exist simple examples for which $\sum_{i=1}^{\infty} |g(x_i)| < \infty$ for all $g \in \text{ext } B^*$ but not for all $g \in w^*$ -closure ext B^* .

(2) We do not know of any example of a Banach space satisfying the hypothesis of Theorem 1 which is not isomorphic to a Lindenstrauss-Phelps space. In fact, we do not know of any space having separable dual which contains isomorphs of c_0 hereditarily which is not isomorphic to a Lindenstrauss-Phelps space.

We would like to thank P. Wojtaszczyk for pointing out the work of Fonf and of Kadets and Fonf.

REFERENCES

- 1. C. Bessaga and A. Pelczynski, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164.
- 2. C. Bessaga and A. Pelczynski, On extreme points in separable conjugate spaces, Israel J. Math. 4 (1966), 262-264.
- 3. V. Fonf, One property of Lindenstrauss-Phelps Spaces, Functional Anal. Appl. 13 (1) (1979), 66-67.
- 4. M. Kadets and V. Fonf, Some properties of the set of extreme points of the unit ball of a Banach space, Math. Notes 20 (3) (1976), 737-739.
- 5. T. Kato, Perturbation theory for nullity deficiency and other quantities of linear operators, J. Analyse Math. 6 (1958), 273-322.
- 6. J. Lindenstrauss and R. Phelps, Extreme point properties of convex bodies in Banach spaces, Israel J. Math. 6 (1968), 39-48.
- 7. J. Rainwater, Weak convergence of bounded sequences, Proc. Amer. Math. Soc. 14 (1963), 999.

DEPARTMENT OF MATHEMATICS THE UNIVERSITY OF TEXAS AUSTIN, TX 78712 USA